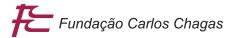


OBI2013 Caderno de Soluções


Modalidade Iniciação • Nível 2, Fase 2

31 de agosto de 2013

Promoção:

Patrocínio:

Feira de Profissões

A escola está organizando uma Feira de Profissões, em que seis profissionais – um geólogo, um médico, uma jornalista, um químico, uma psicóloga e um sociólogo – darão palestras para os alunos sobre suas respectivas profissões.

Duas palestras serão na segunda-feira, duas na terça-feira, e duas na quarta-feira. As seguintes restrições devem ser obedecidas:

- 1. A palestra do químico deve ser no mesmo dia em que a da psicóloga.
- 2. O geólogo não pode dar a sua palestra no mesmo dia em que o médico.
- 3. Se a palestra da jornalista for na segunda-feira, a palestra do geólogo deve ser na terça-feira.
- 4. Se a palestra do sociólogo for na quarta-feira, a palestra do médico deve ser na terça-feira.

Questão 1. Qual das seguintes alternativas poderia ser uma lista completa e correta das palestras em cada dia?

- (A) Segunda-feira: geólogo, químico; terça-feira: médico, psicóloga; quarta-feira: jornalista, sociólogo

 Não obedece à regra 1
- (B) Segunda-feira: geólogo, jornalista; terça-feira: químico, psicóloga; quarta-feira: médico, sociólogo Não obedece à regra 4
- (C) Segunda-feira: jornalista, sociólogo; terça-feira: geólogo, médico; quarta-feira: químico, psicóloga *Não obedece à regra 2*
- (D) Segunda-feira: químico, psicóloga; terça-feira: geólogo, jornalista; quarta-feira: médico, sociólogo Não obedece à regra 4
- (E)* Segunda-feira: químico, psicóloga; terça-feira: médico, jornalista; quarta-feira: geólogo, sociólogo Alternativa correta

Questão 2. Qual das seguintes alternativas é necessariamente verdadeira?

- (A) A palestra da jornalista não é no mesmo dia da palestra do geólogo.
- (B)* A palestra da jornalista não é no mesmo dia da palestra do sociólogo. Alternativa correta. Dos três dias, um é ocupado pelo químico e pela psicóloga (regra 1). Se o outro for ocupado pela jornalista e pelo sociólogo, sobrarão o médico e o geólogo no mesmo dia, o que contraria a regra 2.
- (C) A palestra do sociólogo não é no mesmo dia da palestra do médico.
- (D) A palestra do geólogo é no mesmo dia da palestra do sociólogo.
- (E) A palestra do médico é no mesmo dia da palestra da jornalista.

Questão 3. Se a palestra da psicóloga é na terça-feira, então qual das seguintes alternativas poderia ser verdadeira?

Pela regra 1, temos terça-feira com a psicóloga e o químico.

(A)* A palestra do geólogo é na segunda-feira.

Alternativa correta. Configuração possível: segunda-feira: geólogo e sociólogo; terça-feira: psicóloga e químico; quarta-feira: médico e jornalista

(B) A palestra da jornalista é na segunda-feira. Pela regra 3, a palestra do geólogo seria na terça-feira, o que é impossível.

(C) A palestra do químico é na segunda-feira. *A palestra do químico é na terça-feira.*

(D) A palestra do médico é na terça-feira. As palestras da terça-feira são da psicóloga e do químico.

(E) A palestra do sociólogo é na quarta-feira. Pela regra 4, a palestra do médico seria na terça-feira, o que é impossível.

Questão 4. Se as palestras do geólogo e da jornalista são no mesmo dia, então qual das seguintes alternativas é necessariamente verdadeira?

Note que essas palestras não podem ser na segunda-feira, pois, se isso ocorresse, a regra 3 seria contrariada.

- (A) A palestra do médico é na segunda-feira.
- (B) A palestra do químico é na segunda-feira.
- (C) A palestra da jornalista é na terça-feira.
- (D) A palestra da psicóloga não é na quarta-feira.
- (E)* A palestra do sociólogo não é na quarta-feira.

 Alternativa correta. As palestras do geólogo e sociólogo são ou na terça-feira, ou na quarta-feira. Se forem na terça-feira, a do sociólogo não pode ser na quarta-feira, pois a regra 4

ocupado com as duas palestras.

Questão 5. Se a palestra do médico é no dia anterior ao dia da palestra do sociólogo, qual das seguintes alternativas não pode ser verdadeira?

seria contrariada. Já se forem na quarta, a do sociólogo também não será, pois o dia estará

- (A) A palestra do médico é na segunda-feira.
- (B) A palestra da jornalista é na segunda-feira.
- (C) A palestra do geólogo é na terça-feira.
- (D)* A palestra da psicóloga é na terça-feira.

Alternativa correta. Pela regra 1, isso significaria ocupar completamente o dia da terça-feira. Com isso, não haveria dois dias consecutivos com espaço para palestra, ou seja, a condição do enunciado não poderia ser satisfeita.

(E) A palestra da psicóloga é na quarta-feira.

Questão 6. Se a palestra do geólogo é no dia anterior ao dia da palestra da psicóloga, qual das seguintes palestras não poderia ser na terça-feira?

(A)* a do médico.

Alternativa correta. A palestra do médico não pode ser no dia da palestra do geólogo (regra 2), nem no dia seguinte, ocupado pela psicóloga e pelo químico (regra 1). Como dois dias consecutivos são bloqueados para o médico, é impossível que sua palestra seja na terça-feira.

- (B) a da jornalista.
- (C) a do químico.
- (D) a da psicóloga.
- (E) a do sociólogo.

Jogos Demais!

Cada dia da semana, de segunda a sexta-feira, após a escola e os deveres de casa, João entra na Internet para jogar um de três jogos, X, Y e Z. Um dos jogos custa R\$ 1,00 por dia jogado, outro custa R\$ 1,20 por dia jogado, e o outro custa R\$ 1,50 por dia jogado. João joga exatamente um jogo por dia, e joga cada um desses três jogos ao menos uma vez por semana. Ele também obedece às seguintes restrições:

- 1. Às quintas-feiras, João joga o jogo que custa R\$ 1,50.
- 2. O jogo X custa mais do que o jogo Z.
- 3. O jogo que João joga às quartas-feiras é mais caro do que o jogo que ele joga às sextas-feiras.
- 4. João joga o jogo Z mais vezes por semana do que ele joga o jogo X.

Deduções

Da regra 2, temos três possibilidades para os custos dos jogos. Primeira possibilidade:

- X: R\$ 1,50
- Y: R\$ 1,20
- Z: R\$ 1,00

Segunda possibilidade:

- X: R\$ 1,50
- Y: R\$ 1,00
- Z: R\$ 1,20

Terceira possibilidade:

- X: R\$ 1,20
- Y: R\$ 1,50
- Z: R\$ 1,00

De modo similar, há três possibilidades para os jogos que João joga às quartas e sextas-feiras: Primeira possibilidade:

- *Quarta-feira: R\$* 1,50
- *Sexta-feira*: *R*\$ 1,20

Segunda possibilidade:

- *Quarta-feira: R\$* 1,50
- *Sexta-feira*: *R*\$ 1,00

Terceira possibilidade:

- *Quarta-feira: R\$* 1,20
- *Sexta-feira*: *R*\$ 1,00

Note que o jogo X deve ser jogado exatamente uma vez na semana, pois, se ele for jogado duas vezes, o jogo Z deverá ser jogado três vezes pela regra 4, impossibilitando que o jogo Y seja jogado alguma vez.

Questão 7. Qual das alternativas seguintes é um valor que João pode gastar com os jogos em uma semana?

(A) R\$ 4,00

Isso não é possível, pois João joga cinco vezes por semana, e cada jogo custa, no mínimo, R\$ 1,00.

(B) R\$ 5,00

Isso só seria possível se João jogasse o mesmo jogo de R\$ 1,00 todos os dias, o que não obedece às condições impostas.

 $(C)^*$ R\$ 6, 20

Alternativa correta.

(D) R\$7,50

Isso só seria possível se João jogasse o mesmo jogo de R\$ 1,50 todos os dias, o que não obedece às condições impostas.

(E) R\$ 8,00

Isso não é possível, pois João joga cinco vezes por semana, e cada jogo custa, no máximo, R\$ 1,50.

Questão 8. Qual das alternativas abaixo poderia ser uma lista completa e correta dos jogos que João joga a cada dia, listados de segunda-feira a sexta-feira?

 $(A)^* Y, Z, X, Y, Z$

Alternativa correta.

(B) Y, Z, Z, Y, X

Não obedece à regra 3, pois X custa mais que Z (regra 2).

(C) Z, Z, X, X, Y

Não obedece à regra 4.

(D) Z, Z, X, X, Z

Não obedece à regra 4.

(E) Z, Z, X, Z, Y

Z não pode custar R\$ 1,50; logo, a regra 1 não é obedecida.

Questão 9. João não pode jogar o jogo que custa R\$ 1,50 em qual dos seguintes dias?

- (A) Segunda-feira
- (B) Terça-feira
- (C) Quarta-feira
- (D) Quinta-feira
- (E)* Sexta-feira

Alternativa correta. O jogo que João joga às quartas-feiras é mais caro do que o das sextas-feiras (regra 3). Como R\$ 1,50 é o preço máximo, a situação é impossível.

Questão 10. Se o jogo Z custa R\$ 1,20, em qual dos seguintes dias João deve jogar o jogo Y?

Trata-se da segunda possibilidade listada acima. Sabemos que, na quinta-feira, João jogará o jogo X. Logo, ele obrigatoriamente jogará o jogo Z na quarta-feira e, na sexta-feira, o jogo Y.

- (A) Segunda-feira
- (B) Terça-feira
- (C) Quarta-feira
- (D) Quinta-feira
- (E)* Sexta-feira

Questão 11. João não pode jogar o jogo Z em qual dos seguintes dias?

- (A) Segunda-feira
- (B) Terça-feira
- (C) Quarta-feira
- (D)* Quinta-feira

Alternativa correta. Como X é mais caro que Z (regra 2), Z nunca custará R\$ 1,50; logo, não pode ser jogado na quinta-feira (regra 1).

(E) Sexta-feira

Questão 12. Qual das alternativas seguintes poderia ser uma lista completa e correta dos dias em que João jogo de R\$ 1,00?

Sempre que o jogo X custar R\$ 1,50 (primeira e segunda possibilidade), ele será jogado na quinta-feira e, portanto, os jogos que custam R\$ 1,20 e R\$ 1,00 serão jogados na quarta e sexta-feira, respectivamente. Como essa possibilidade não é contemplada nas alternativas, sabemos que trata-se da terceira possibilidade de configuração listada acima.

Portanto, o jogo Y será jogado na quinta-feira. Não estamos procurando nenhuma alternativa em que o jogo Z seja jogado na sexta-feira. Logo, temos que o jogo Y foi jogado na quarta-feira e que o jogo X foi jogado na sexta-feira. Assim, para obedecer à regra 4, o jogo Z deve ter sido jogado na segunda e terça-feira.

- (A) Segunda-feira
- (B) Terça-feira
- (C)* Segunda-feira, terça-feira
- (D) Segunda-feira, quarta-feira
- (E) Segunda-feira, quinta-feira

Jogos de Futebol

No período de um mês o time de futebol da escola vai jogar exatamente sete jogos. Cada um dos jogos será contra o time de uma seguintes escolas: Franciscano, Marista, Rumo, Salesiano ou Terra. As seguintes restrições governam a escolha dos jogos:

- 1. Haverá três jogos contra o Franciscano, e exatamente um jogo contra cada um dos outros times.
- 2. Não haverá dois jogos consecutivos contra o Franciscano.
- 3. O jogo contra o Salesiano é o jogo imediatamente seguinte ao jogo contra o Terra.
- 4. Nem o primeiro jogo nem o último jogo são contra o Marista.

Questão 13. Qual das seguintes alternativas poderia ser uma sequência de jogos?

- (A) Franciscano, Rumo, Terra, Salesiano, Franciscano, Marista, Rumo Há apenas dois jogos contra o Franciscano, contrariando a regra 1.
- Franciscano, Terra, Salesiano, Marista, Franciscano, Franciscano, Rumo Há dois jogos seguidos contra o Franciscano, contrariando a regra 2.
- Franciscano, Rumo, Franciscano, Marista, Franciscano, Terra, Salesiano Alternativa correta.
- (D) Franciscano, Terra, Marista, Franciscano, Salesiano, Rumo, Franciscano Não obedece à regra 3
- (E) Franciscano, Terra, Salesiano, Franciscano, Rumo, Franciscano, Marista O jogo contra o Marista é o último, contrariando a regra 4.

Questão 14. Se o último jogo é contra o Rumo, qual das seguintes alternativas poderia ser verdadeira?

- (A) O segundo jogo é contra o Salesiano. Pela regra 3, o primeiro jogo seria contra o Terra. Com isso, estariam livres 4 jogos
 - (terceiro, quarto, quinto e sexto). Porém, é impossível alocar três jogos contra o Franciscano obedecendo à regra 2 nessa quantidade de jogos.
- (B) O terceiro jogo é contra o Marista.
 - Se um dos primeiros dois jogos fosse contra o Franciscano, não haveria time para jogar o outro dos dois primeiros jogos, já que Marista e Rumo já têm seus dias definidos (terceiro e sétimo) e os jogos contra Terra e Salesiano precisam ocorrer em jogos seguidos. Logo, Terra e Salesiano precisariam ser alocados nos dois primeiros jogos, o que, novamente, é impossível.
- (C) O quarto jogo é contra o Salesiano. Pela regra 3, o terceiro jogo seria contra o Terra. Logo, estariam livres dois blocos de dois jogos consecutivos (primeiro e segundo, quinto e sexto). Nesses blocos, só é possível alocar dois jogos contra o Franciscano obedecendo à regra 2; assim, a regra 1 seria contrariada.
- O quinto jogo é contra o Marista. Alternativa correta. Configuração possível: Franciscano, Terra, Salesiano, Franciscano, Marista, Franciscano, Rumo.
- (E) O sexto jogo é contra o Salesiano. Para obedecer às regras 1 e 2, seriam contra o Franciscano os jogos: primeiro, terceiro e quinto. Porém, não sobrariam jogos consecutivos para obedecer à regra 3.

Questão 15. Se o segundo jogo é contra o Franciscano, então qual das seguintes alternativas é uma lista completa e correta de todos os times que podem ser o adversário do quarto jogo?

As únicas configurações possíveis são:

Rumo, Franciscano, Marista, Franciscano, Terra, Salesiano, Franciscano

Rumo, Franciscano, Terra, Salesiano, Franciscano, Marista, Franciscano

- (A) Franciscano, Salesiano, Rumo
- (B) Marista, Rumo, Terra
- (C) Marista, Salesiano
- (D) Rumo, Terra
- (E)* Franciscano, Salesiano

Questão 16. Se o jogo contra o Rumo é o imediatamente seguinte ao jogo contra o Salesiano, então qual das seguintes alternativas é necessariamente verdadeira?

As únicas configurações possíveis são:

Franciscano, Terra, Salesiano, Rumo, Franciscano, Marista, Franciscano

Franciscano, Marista, Franciscano, Terra, Salesiano, Rumo, Franciscano

- (A) O terceiro jogo é contra o Franciscano.
- (B) O quarto jogo é contra o Rumo.
- (C) O quinto jogo é contra o Franciscano.
- (D) O sexto jogo é contra o Rumo.
- (E)* O sétimo jogo é contra o Franciscano.

Questão 17. Se o primeiro jogo é contra o Terra, então o jogo contra o Rumo poderia ser

- (A) o segundo jogo
- (B) o terceiro jogo
- (C) o quinto jogo
- (D)* o sexto jogo

Alternativa correta. Configuração possível: Terra, Salesiano, Franciscano, Marista, Franciscano, Rumo, Franciscano.

(E) o sétimo jogo

Questão 18. Se o jogo contra o Rumo é o jogo imediatamente anterior ao jogo contra o Marista, então qual dos times abaixo poderia ser o adversário do quarto jogo?

(A)* Franciscano

Alternativa correta. Configuração possível: Franciscano, Rumo, Marista, Franciscano, Terra, Salesiano, Franciscano.

- (B) Marista
- (C) Rumo
- (D) Salesiano
- (E) Terra

No país das maravilhas

Uma companhia de teatro está iniciando os ensaios para uma nova versão de Alice no País das Maravilhas. Oito meninas, Lia, Mel, Nanda, Olga, Pilar, Rute, Sara e Tina, disputam o papel de Alice, e vão realizar um teste para determinar qual é a escolhida. Os testes, com duração de uma hora, serão feitos de segunda-feira a sexta-feira, em dois horários, 8:00 e 9:00 horas. Uma menina será testada por vez, mas nenhuma menina será testada no horário de quarta-feira 8:00, pois já há uma reunião do resto do elenco marcada para esse dia e horário. As seguintes condições devem ser obedecidas:

- 1. Sara é testada terça-feira, 9:00.
- 2. Pilar deve ser testada em algum momento antes de Nanda.
- 3. Olga deve ser testada no mesmo dia que Mel.
- 4. Se Lia é testada às 8:00 em algum dia, então Rute é testada às 8:00 em outro dia.

Questão 19. Qual das alternativas seguintes poderia ser uma lista completa e correta das meninas testadas no horário das 8:00, de segunda a sexta-feira?

- (A) Olga, Nanda, nenhuma, Pilar, Tina. *Não obedece à regra 2.*
- (B) Lia, Tina, nenhuma, Pilar, Rute. Nem Olga, nem Mel aparecem na lista. Portanto, fica impossível obedecer à regra 3.
- (C) Olga, Pilar, nenhuma, Lia, Nanda. *Não obedece à regra 4.*
- (D)* Rute, Tina, nenhuma, Pilar, Mel. *Alternativa correta*.
- (E) Olga, Lia, nenhuma, Mel, Rute. *Não obedece à regra 3*.

Questão 20. Se Nanda é testada sexta-feira, 8:00, qual é o dia e horário mais tarde na semana em que Mel poderia ser testada?

- (A) Quinta-feira, 8:00
- (B) Quarta-feira, 9:00
- (C)* Quinta-feira, 9:00 Alternativa correta. Configuração possível: Lia (segunda-feira 8:00), Pilar (segunda-feira 9:00), Rute (terça-feira 8:00), Sara (terça-feira 9:00), Tina(quarta-feira 9:00), Olga (quinta-feira 8:00), Mel (quinta-feira 9:00), Nanda (sexta-feira 8:00).
- (D) Sexta-feira, 9:00 *Isso não obedeceria à regra 3.*
- (E) Segunda-feira, 9:00

Questão 21. Se Tina e Nanda são testadas em algum momento antes de Sara, qual das seguintes alternativas não pode ser verdadeira?

Há três horários no começo da semana antes do de Sara: segunda-feira às 8:00, segunda-feira às 9:00 e terça-feira às 8:00. Se Nanda será testada em um deles, Pilar também será (regra 2). Logo, os três primeiros horários da semana serão ocupados, em alguma ordem, por Tina, Pilar e Nanda.

- (A) Mel é testada em algum horário na quinta-feira.
- (B) Rute é testada quinta-feira, 8:00.
- (C)* Lia é testada quinta-feira, 8:00.

 Alternativa correta. Apenas quinta e sexta-feira têm o horário das 8:00 disponível. Pela regra 4, temos que Lia e Rute ocuparão esses horários. Logo, torna-se impossível obedecer à regra 3.
- (D) Lia é testada quarta-feira, 9:00.
- (E) Tina e Pilar são testadas no mesmo dia.

Questão 22. Se Nanda e Olga são testadas em algum momento antes de Tina, qual é o dia e horário mais cedo na semana em que Tina pode ser testada?

Olga e Mel ocuparão um dia para serem testadas (regra 3). Somando Pilar (regra 2) e Nanda, já são quatro horários. Entretanto, Sara precisa ser testada terça-feira às 9:00 (regra 1), resultando na ocupação dos seguintes horários: segunda-feira 8:00, segunda-feira 9:00, terça-feira 8:00, terça-feira 9:00, quarta-feira 9:00. O primeiro horário disponível para Tina é quinta-feira às 8:00.

(A)* Quinta-feira, 8:00

Alternativa correta. Configuração possível: Olga (segunda-feira 8:00), Mel (segunda-feira 9:00), Pilar (terça-feira 8:00), Sara (terça-feira 9:00), Nanda (quarta-feira 9:00), Tina (quinta-feira 8:00), Lia (quinta-feira 9:00), Rute (sexta-feira 8:00).

- (B) Terça-feira, 8:00
- (C) Quarta-feira, 9:00
- (D) Quinta-feira, 9:00
- (E) Sexta-feira, 9:00

Questão 23. Se nenhuma menina é testada na quinta-feira, 8:00, qual das seguintes alternativas poderia ser verdadeira?

- (A) Lia é testada terça-feira, 8:00 e Nanda é testada sexta-feira, 8:00. Pela regra 4, Rute deve ser testada segunda-feira, 8:00. Logo, não há dia com o horário das 8:00 livre e a regra 3 não pode ser obedecida.
- (B) Nanda é testada em algum momento antes de Sara, e Pilar é testada em algum momento após Mel.

 Mel e Olga deve ser testadas no mesmo dia (regra 3). Logo, terça-feira, 8:00 é o primeiro horário disponível para Pilar. Pelas regras 1 e 2, Nanda não pode ser testada antes de Sara.
- (C) Pilar é testada segunda-feira, 9:00, e Nanda é testada sexta-feira, 9:00.

 Nesse cenário, não sobraria nenhum dia com os dois horários livres para que a regra 3 fosse obedecida.
- (D)* Lia é testada terça-feira, 8:00 e Olga é testada em algum momento antes de Rute. *Alternativa correta. Configuração possível: Olga (segunda-feira 8:00), Mel (segunda-feira 9:00), Lia (terça-feira 8:00), Sara (terça-feira 9:00), Tina (quarta-feira 9:00), Pilar (quinta-feira 9:00), Rute (sexta-feira 8:00), Nanda (sexta-feira 9:00).*
- (E) Pilar é testada 8:00 e Lia é testada 8:00. Contando com o horário das 8:00 em que Rute deve ser testada (regra 4), são cinco horários das 8:00 bloqueados. Logo, não sobra nenhum dia para que a regra 3 seja obedecida.

Questão 24. Se Rute é testada na quinta-feira, 8:00 e Tina é testada na sexta-feira, 8:00, qual das seguintes alternativas poderia ser verdadeira?

- (A) Olga é testada em algum momento após Sara.

 Nem quarta, nem quinta, nem sexta-feira têm os dois horários livres para que a regra 3 seja obedecida.
- (B)* Lia é testada na quarta-feira, 9:00.

 Alternativa correta. Configuração possível: Olga (segunda-feira 8:00), Mel (segunda-feira 9:00), Pilar (terça-feira 8:00), Sara (terça-feira 9:00), Lia (quarta-feira 9:00), Rute (quinta-feira 8:00), Nanda (quinta-feira 9:00), Tina (sexta-feira 8:00).
- (C) Nanda é testada na terça-feira, 8:00.

 Pela regra 2, Pilar deve ser testada na segunda-feira. Logo, não sobra nenhum dia livre para que a regra 3 seja obedecida.
- (D) Lia é testada na segunda-feira, 9:00. Com a segunda-feira ocupada, não sobra nenhum dia livre para que a regra 3 seja obedecida.
- (E) Olga e Nanda são testadas em dias consecutivos (ou seja, um dia imediatamente após o outro).

 Segunda-feira, o único dia com os dois horários livres, deve abrigar os testes de Olga e Mel.

 Logo, o teste de Nanda deveria ser terça-feira às 8:00, mas isso não obedeceria à regra 2.

Canil

O canil de um famoso criador de cães tem cinco pequenos cômodos, dispostos em uma fileira, um ao lado do outro, numerados de 1 a 5 da esquerda para a direita. Os cômodos são usados para abrigar sete cães — quatro da raça beagle três da raça labrador. Cinco dos animais são fêmeas e dois são machos. Os animais devem ser distribuídos nos cômodos da seguinte maneira:

- 1. Nenhum cômodo abriga mais do que dois animais.
- 2. Nenhum cômodo abriga ambos um beagle e um labrador.
- 3. Nenhuma fêmea beagle é colocada em um cômodo que é imediatamente vizinho a um cômodo que abrigue um labrador macho.

Questão 25. Qual das alternativas seguintes é uma distribuição completa e correta dos animais nos cômodos do canil?

- (A) 1: duas fêmeas beagle; 2: um macho beagle; 3: uma fêmea labrador; 4: um macho beagle, uma fêmea labrador; 5: uma fêmea labrador *O cômodo 4 não obedece à regra 2*
- (B)* 1: vazio; 2: duas fêmeas beagle; 3: duas fêmeas labrador; 4: dois machos beagle; 5: uma fêmea labrador *Alternativa correta*
- (C) 1: uma fêmea beagle, um macho beagle; 2: duas fêmeas beagle; 3: um macho labrador; 4: uma fêmea labrador; 5: uma fêmea labrador *O par de cômodos 2,3 não obedece à regra 3*
- (D) 1: dois machos beagle; 2: vazio; 3: uma fêmea labrador; 4: uma fêmea labrador; 5: duas fêmeas beagle, uma fêmea labrador *O cômodo 5 não obedece à regra 1*
- (E) 1: uma fêmea beagle, um macho beagle; 2: uma fêmea beagle, um macho beagle;
 3: um macho labrador; 4: uma fêmea labrador;
 5: uma fêmea labrador
 O par de cômodos 2,3 não obedece à regra 3

Questão 26. Se o cômodo 2 contém pelo menos uma fêmea beagle e o cômodo 4 contêm dois machos labrador, qual das seguintes alternativas poderia ser verdadeira?

Como são apenas 2 machos, sabemos que todos os animais restantes são fêmeas. Ainda, como 2 dos 3 labradores já estão determinados, há apenas 1 labrador restante para ser alocado, bem como 3 beagles.

- (A) O cômodo 3 contém dois animais.

 Pelo menos um deles seria uma fêmea beagle, e o par 3,4 não obedeceria à regra 3
- (B) O cômodo 5 contém dois animais. *Pelo menos um deles seria uma fêmea beagle, e o par 4,5 não obedeceria à regra 3*
- (C) O cômodo 1 contém uma fêmea labrador.

 Com isso, os seguintes cômodos não poderiam alocar fêmeas beagle: 1 (regra 2), 3 (regra 3), 4 (regra 1) e 5 (regra 3). Mas faltam ser alocadas 3 fêmeas beagle e apenas o cômodo 2 está disponível, o que não permite solução.
- (D) O cômodo 2 contém uma fêmea labrador. *Isso não obedeceria à regra* 2
- (E)* O cômodo 5 contém uma fêmea labrador.

 Alternativa correta. Configuração possível: 1: duas fêmeas beagle; 2: duas fêmeas beagle; 3: vazio; 4: dois machos labrador; 5: uma fêmea labrador

Questão 27. Qual das seguintes alternativas é necessariamente verdadeira?

- (A) Pelo menos uma fêmea está sozinha em um cômodo.
 - Configuração possível: 1: duas fêmeas beagle; 2: uma fêmea beagle e um macho beagle; 3: duas fêmeas labrador; 4: um macho labrador; 5: vazio
- (B) Pelo menos um macho está sozinho em um cômodo.
 - Configuração possível: 1: duas fêmeas beagle; 2: duas fêmeas beagle; 3: vazio; 4: dois machos labrador; 5: uma fêmea labrador
- (C)* Pelo menos um animal da raça labrador está sozinho em um cômodo.

 Alternativa correta. Como todo cômodo que contém um labrador só pode conter labradores (regra 2) e há um número ímpar (3) de labradores, é impossível que todos estejam em pares de animais.
- (D) Pelo menos um labrador é macho.
 - Configuração possível: 1: dois machos beagle; 2: duas fêmeas beagle; 3: duas fêmeas labrador; 4: 1 fêmea labrador; 5: vazio
- (E) Pelo menos um beagle é macho. Configuração possível: 1: duas fêmeas beagle; 2: duas fêmeas beagle; 3: vazio; 4: dois machos labrador; 5: uma fêmea labrador

Questão 28. Qual das seguintes alternativas não pode ser a distribuição completa para os cômodos 1 e 2?

- (A) 1: uma fêmea beagle, um macho beagle; 2: um macho beagle.

 Configuração possível: 1: uma fêmea beagle, um macho beagle; 2: um macho beagle; 3: duas fêmeas labrador; 4: uma fêmea labrador; 5: uma fêmea beagle
- (B) 1: um macho labrador; 2: um macho beagle. Configuração possível: 1: um macho labrador; 2: um macho beagle; 3: duas fêmeas beagle; 4: uma fêmea beagle; 5: duas fêmeas labrador
- (C) 1: duas fêmeas labrador; 2: uma fêmea beagle
 Configuração possível: 1: duas fêmeas labrador; 2: uma fêmea beagle; 3: uma fêmea beagle;
 4: dois machos beagle; 5: uma fêmea labrador
- (D)* 1: um macho beagle; 2: vazio Alternativa correta. Ainda precisamos alocar 3 beagles; pelas regras 1 e 2, eles ocuparão completamente mais 2 cômodos. Logo, sobrará apenas 1 cômodo para os 3 labradores, o que é não permite solução pela regra 1.
- (E) 1: vazio; 2: uma fêmea labrador Configuração possível: 1: vazio; 2: uma fêmea labrador; 3: duas fêmeas labrador; 4: duas fêmeas beagle; 5: dois machos beagle

Questão 29. Se o cômodo 3 está vazio, e nenhum animal da raça beagle está em um cômodo imediatamente vizinho a um cômodo que contém um animal da raça beagle, qual das seguintes alternativas poderia ser falsa?

Com o cômodo 3 vazio, ficamos com dois grupos de cômodos não vazios adjacentes, a saber: 1,2 e 4,5.

- (A)* Todos os animais da raça beagle estão em cômodos pares. *Alternativa correta. Configuração possível: 1: dois machos beagle; 2: duas fêmeas labrador;*3: vazio; 4: duas fêmeas beagle; 5: uma fêmea labrador
- (B) Nenhum dos animais labrador é macho.

 Suponha que pelo menos um labrador seja macho. No cômodo não vazio adjacente, só pode existir, no máximo, 1 beagle, pois ele deve ser macho (regra 3) e só existem 2 machos. Assim, sobram 3 beagles para serem alocados no segundo grupo de cômodos não vazios, o que é impossível com a restrição imposta na questão.
- (C) Nenhum animal da raça beagle está sozinho em um cômodo. Se existir um beagle sozinho em um cômodo, só existirá 1 beagle nesse grupo de cômodos não vazios, sobrando 3 beagles para o outro grupo; isso torna a alocação impossível nos termos da questão.
- (D) Nenhum animal da raça labrador está em um cômodo que é imediatamente vizinho a um cômodo com outro animal da raça labrador.

 Se isso acontecer, um dos grupos de cômodos não vazios conterá nenhum beagle (regra 2), sendo impossível alocar os 4 restantes no outro grupo nos termos da questão.
- (E) Exatamente um cômodo contém exatamente um animal.

 Primeiramente: pelo menos um cômodo conterá exatamente um animal, pois a soma de todas as quantidades é ímpar (7), e o único número ímpar de animais por cômodo permitido é 1 (regra 1). Além disso, se dois ou mais cômodos contiverem apenas 1 animal, sobrarão mais animais do que cômodos disponíveis (exemplo: 5 animais e 2 cômodos)

Questão 30. Se todas os beagles são fêmeas e cada um dos labradores está sozinho em um cômodo, qual das seguintes alternativas é um cômodo que não pode conter qualquer beagle?

Como todos os beagle são fêmeas, os dois machos são labradores e estão em cômodos separados. Se o cômodo 3 contiver algum beagle, os cômodos 2 e 4 não poderão conter nenhum labrador macho (regra 3), ou seja, eles estarão nos cômodos 1 e 5. Mas isso significa que nenhum beagle poderá estar nos cômodos 2 e 4, ou seja: fica impossível alocar os 4 beagles.

- (A) cômodo 1
- (B) cômodo 2
- (C)* cômodo 3
- (D) cômodo 4
- (E) cômodo 5

Note que, pela simetria do problema (a ordem 1, 2, 3, 4, 5 é análoga à ordem 5, 4, 3, 2, 1), apenas o cômodo 3 poderia ser a resposta, pois qualquer outro cômodo proibido resultaria em mais de uma alternativa correta.